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Standard random-matrix ensembles, for example, the well-known Gaussian ensembles, are constructed
under the constraint of invariance under a canonical transformation, and have been generally developed
as models for ergodic Hamiltonian systems. Herein, we consider invariant matrix ensembles that model
the energy-level statistics of nonergodic systems, and contain the ergodic limit as a special case. After
examining some properties of invariant matrix ensembles, we present numerical calculations of probabil-
ity densities of matrix elements. We focus on the extreme case of an invariant ensemble yielding eigen-
values with Poisson statistics, i.e., level statistics of semiclassical, integrable Hamiltonians, from which
we can determine essential differences between invariant ensembles modeling ergodic and nonergodic
systems. The ensemble presented here is compared with a specific model Hamiltonian, whose degree of
ergodicity is determined by variation of a single parameter. The model Hamiltonian is block diagonal-
ized to an “ensemble” of small blocks for parameter values varied between the ergodic and nonergodic
limits. Distributions of elements observed in the blocks are compared with those predicted by the matrix
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ensembles.
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I. INTRODUCTION

The recognition that individual level assignments of
nuclear spectra containing stretches of levels beginning at
very large quantum numbers is a practical impossibility
led to the development of the theory of spectral statistics.
It was conjectured that the energy-level statistics of com-
plex nuclear spectra could be predicted by those of an en-
semble of random matrices, where each random element
of any matrix is chosen from a Gaussian distribution [1].
Numerous level statistics of the Gaussian ensembles have
been solved, notably the probability density of nearest-
neighbor level spacings [2], which is nearly the same as
that surmised by Wigner, closely matching the spacings
observed in complex nuclear spectra. The same level
spacings have been since observed in atomic [3] and
molecular spectra [4], and the statistics of the Gaussian
ensembles are now recognized as universal to spectra of
ergodic Hamiltonian systems [5].

The Gaussian ensembles may be formulated by impos-
ing two conditions on the matrix ensemble [1]: (1) that it
be invariant under a canonical transformation, either or-
thogonal, unitary, or symplectic; and (2) that each matrix
element be statistically independent from all the others.
The first assumption amounts to choosing an ensemble of
Hamiltonians independent of any particular representa-
tion. The second condition is one of convenience. Nev-
ertheless, by only choosing condition (1), one may arrive
at the level statistics of the Gaussian ensembles under
quite general conditions. In a narrow range of energy
where the local level density is constant, the level fluctua-
tions found in the Gaussian ensembles are also found in
invariant ensembles where the probability density of the
matrix elements is not Gaussian [6,7]. This situation is,
of course, desirable, since there is no physical basis for
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supposing that the matrix elements of a Hamiltonian be
independent.

Our purpose in this paper is to investigate invariant
random matrix ensembles that predict energy-level statis-
tics different from those of the Gaussian ensembles.
Though we seek characteristics of invariant ensembles for
arbitrary statistics, we focus on sequences of random lev-
els, and also consider level statistics intermediate between
random and those of the Gaussian ensembles. The
reason to choose random level sequences is that these
form an additional universality class, those of semiclassi-
cal, integrable Hamiltonians [8]. We seek, then, to un-
derstand differences between ensembles modeling entirely
different physical systems, i.e., integrable and chaotic, or
equivalently ensembles containing very different eigenval-
ue statistics, i.e., random and the highly correlated eigen-
values of the Gaussian ensembles. It should be noted that
as opposed to ergodic Hamiltonian systems, a natural
basis is known if the Hamiltonian is integrable, namely
quantization of the classically invariant tori. In this
basis, each member of the matrix ensemble contains ran-
dom diagonal elements and all off-diagonal elements are
0. We may still ask, however, what the structure of a
Hamiltonian would be without specifying the representa-
tion, and we do this in the following. In this way we also
observe how representation-independent matrix element
distributions change with transitions from random level
sequences to those of the Gaussian ensembles, or as the
level statistics change from those of integrable to those of
ergodic systems.

Determination of matrix element distributions or even
some of their lower moments based solely on the invari-
ance condition and a general energy-level statistic, such
as a random sequence or any other, is extremely difficult.
Some general properties of invariant ensembles have been
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derived, such as some correlations among matrix ele-
ments [9], and these will be summarized in the following
section. To these we add the following observation for
orthogonal ensembles. For H a member of the orthogo-
nal ensemble, and

V=2H;, D=H;—H;, i¥#j, (n
we find P, (V)=Pp(V), where P, and Py, are, respective-
ly, the probability densities of ¥ and D. This is easily
shown for the two- and o -dimensional ensembles, and in
the Appendix we show this relation to hold for ensembles
of general dimension.

The corresponding relation for the unitary case is
found by breaking up V into its real and imaginary parts.
Calling the real part again V and the imaginary part U,
Py(V)=Py(V)=Pp(V). As the orthogonal ensembles,
corresponding to semiclassical Hamiltonians with time-
reversal symmetry, apply to most problems of physical
interest, our discussions and examples will largely focus
on these rather than others, but generalizations to the un-
itary and simplectic cases are straightforward.

While we cannot express P (V) or, equivalently,
P, (D), explicitly for general eigenvalue statistics and
finite matrices, we obtain the densities Py (V) numerically
by exploiting the relation between matrix elements of H
and the statistical mechanics of its eigenvalues E;. We
may thereby apply efficient Monte Carlo procedures stan-
dardly employed in many-body statistical mechanics. We
have chosen the well-known Metropolis method summa-
rized in Sec. 111, where we also give results of its applica-
tion in determining Py (¥) for small-dimensional ensem-
bles. As we shall see, for the matrix ensembles modeling
nonergodic systems, matrix dimensions as small as 10
have distributions that are already quite close to Gauss-
ian. In fact, the essential difference between invariant en-
sembles yielding level statistics of the Gaussian ensembles
and those that do not is most easily seen in the probabili-
ty density of all the matrix elements, P;(H), which con-
tains singularities in the latter case, whereas it is smooth
in the former. P (V), obtained upon integrating out all
matrix elements but one, can hardly be distinguished nu-
merically among various large-dimensional invariant en-
sembles, differences from a Gaussian being very subtle.

We finally ask if the distributions so obtained are real-
ized in actual Hamiltonians sharing the same eigenvalue
statistics. To determine this, all representations of a
semiclassical Hamiltonian that is, say, integrable would
have to be considered, and this is of course not possible.
Moreover, as remarked above, P (V) itself differs notice-
ably from a Gaussian only when the matrix dimensions
are very small. Both of these restrictions may be avoided
by block diagonalizing a Hamiltonian to an “ensemble”
of very small blocks and analyzing P, (V) over this en-
semble. The effect of any one representation of H will be
minimized when H, originally large, is block diagonalized
to very small blocks. The smallness of the blocks, fur-
thermore, allows us to examine if Py (V) predicted in Sec.
III is found in the specific case of a Hamiltonian matrix.
The block-diagonalization procedure, its application to
the quartic oscillator Hamiltonian, and comparisons with

theoretical P, (V) are given in Sec. IV. In Sec. V we sum-
marize our results.

II. INVARIANCE CONDITION

Various consequences of imposing transformational in-
variance on a matrix ensemble were studied by Ullah and
co-workers [9]. These led to conclusions concerning mo-
ments of the off-diagonal and diagonal matrix elements of
a member of the ensemble H and correlations among ma-
trix elements, some of which we mention below. In deter-
mining these, one exploits the fact that P;(H), where the
elements of H are

H;=3 E,a,a, , )
a

may be expressed in terms of the product of the probabil-
ity density of the eigenvalues E, and eigenvectors
a={a,;}, so that the joint density P ,(E,a) may be writ-
ten Pz(E)P,(a). This separability is a consequence of
transformational invariance. The probability density of
all the matrix elements of H is found by integrating over
all the a,;’s. One then has that Py(H) is a function of
the energies alone [1]

PgEE,,...,Ez;B)
Py(Hyy, ..., HysB)=Kz—t2 L)\
H ]E,‘—Ej'ﬁ
ij=1
i<j

where the denominator is the Jacobi determinant, K is
the normalization constant, and B represents the canoni-
cal group, and is 1, 2, or 4 for the orthogonal, unitary, or
simplectic groups, respectively. The former two values
are of most significance semiclassically, and will be the
only ones considered explicitly in the examples that fol-
low. B=1 corresponds to Hamiltonians with time-
reversal invariance and S=2 to noninvariance.

To compute ensemble averages of products of individu-
al elements of H, one needs to return to Eq. (2) and, not-
ing the independence of E, and a;, calculate expressions
such as

d
(Hinkl"')= z
a,a,. .. =1

<Ea,Ea2"')

X<aaliaa1jaa2kaa21 e ) ’
“4)

so that what is needed in addition to averages of products
of eigenvalues is averages of products of eigenvectors.
The latter is obtained from the probability density of
products of eigenvector components, for which Ullah ob-
tained expressions for products of up to two eigenvectors,
more being exceedingly difficult to calculate [9]. Using
these he showed, for example, that all odd moments of
Py(Hy;), i7], are 0, so that Py (H};) is a symmetric func-
tion. From definition (1), we see that both P, and Pj
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have vanishing odd moments. Another conclusion
reached by Ullah is that there are no correlations be-
tween an odd power of H;;, i7j, and any power of any
other element of H.

To look more closely at the relation between V and D
of Eq. (1), we turn to Eq. (3) for orthogonal ensembles,
B=1. For d=2, we define S=FE,—E, and set the trace
to O since it is irrelevant to what follows. Then, since
S?=V2*+D? Py, ,(V,D) reads as

Ps(V'V?+D?)

1
V,D;p=1)=— —
Py pl B=1) Y s

(5)

P,(V)[Pp(D)] is found by integrating Eq. (5) over
D (V), and due to the symmetry of ¥ and D in (5), it is
clear that P, (¥V)=Pp(D) for V=D.

In the same way, one finds that P,(V)=P,(D)
=Py, (U) for the d =2 unitary ensembles, as mentioned in
the Introduction, where V and U are, respectively, the
real and imaginary parts of 2H,;. Then

1 Ps(VV*+U?+D?)
4m  VI+U+D?

Py yp(V,U,D;B=2)= (6)

For the infinite-dimensional case, we observe that while
there are O (d?) elements in H, there are at most O (d)
constraints, so that Eq. (3) approaches the limit of a prod-
uct of independent Gaussians as d — . Then again
V(U) and D are described by the same probability densi-
ty, as this is the case for the Gaussian ensembles [1].

In the Appendix, we show that P, (V)=P(D), where
V =D for any d-dimensional ensemble.

I11. DISTRIBUTIONS OF MATRIX ELEMENTS

It is useful to rewrite Py given by Equation (3) to read
as

Py(H;B)=Kge #%, (7a)

d
W=—1n[fE(E)]+21n|E,-—~Ej| , (7b)
1 <_]
where f;(E)=[Pg(E)]'/. Then, P, (H;pB) has the form
of a Boltzmann distribution with potential W and inverse
temperature proportional to 8. Equation (7) is analogous
to the statistical mechanics introduced by Dyson [10] for
the energy-level distributions of the circular and Gauss-
ian ensembles.
For the Gaussian ensembles, the probability density of
the energies is

Py (E,,...,E;;B)=exp |—B3 (E,—E.)
X I11E,—E;I*, (8)
ij
i<j
where E_. is a parameter fixed for the ensemble; then
Py (H;pB) is, of course, just the product of independent
Gaussians. Defining E, instead to be a variable such that
E.=(1/N)3E;, Py is the probability density derived by
Yukawa [11] for the case of a strongly perturbed Hamil-

tonian. The overall level density is constant rather than
semicircular as in the Gaussian ensembles. Nevertheless,
the local level statistics are identical in both cases. In
fact, investigations have shown that by replacing the ex-
ponential in (8) with a variety of smooth functions, the
level statistics of the Gaussian ensembles are obtained in
flat regions of the energy density [6]. The implication is
that these statistics are universal when SW in (7a) is a
smooth function of the energies, and this has indeed been
rigorously shown to be the case [7].

Now consider P such that the levels form a random
sequence described by Poisson statistics. We constrain
the levels to have a constant mean density over the whole
sequence, allow them unlimited range, and so choose

~BAE .
4 (9a)

PE e
where AE, is the energy difference between the highest
and lowest eigenvalues of a matrix. The potential in (7a)
is then

d

W=AE,+3 In|E,~E, , (9b)
ij
i<j

which is logarithmic and pairwise attractive, having a
“minimum” where all the energies are identical,
E,=E,=---=E;=E, corresponding to a matrix H
with elements H;; =0 and H; =H|; for all i and .

Although the invariant ensembles are defined by
discrete values of S, it is of interest to consider the limits
=0 and B— . In doing so, we take the ensemble to be
defined by a single canonical group, e.g., orthogonal.
Then using (7a) and (9b), we consider how the orthogonal
ensemble Py (H;pB) varies with 5. At f— « (0 tempera-
ture), Py (H; ) lies at the minimum of the potential, so
that P(H;;»)=8(H;) for i#j, and P(H;;)
=8(E—Hy). In the other limit, 5=0, Py(H;0) is in-
dependent of the energies, and the singularities in W are
irrelevant so that the statistics of the Gaussian ensembles
are obtained in this limit. If one further constrains the ei-
genvalues to lie in the range —1 < E; <1, the orthogonal
P, (H;0) is identical to the Legendre ensemble proposed
by Leff [6a], who showed that the local eigenvalue statis-
tics of the latter are the same as those of the Gaussian or-
thogonal ensemble. From this perspective, the parameter
B may be thought of as a continuous variable that deter-
mines the statistical properties of a particular invariant
ensemble, i.e., an ensemble selected to be invariant under
one of the three canonical groups. In this way, [ is
analogous to the Brody parameter for the spacings distri-
bution of orthogonal ensembles [13].

Having defined by Egs. (7) and (9) an invariant ensem-
ble that produces random level sequences, i.e., the level
statistics of semiclassical, integrable Hamiltonians, we
now wish to examine the distribution of matrix elements
of H. Besides providing a description of the transition
from ensembles of matrices yielding Poisson statistics to
those of the Gaussian ensembles, the formulation of
Py (H) in terms of a Boltzmann distribution offers a con-
venient framework to employ numerical methods com-
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monly applied to many-body statistical mechanics prob-
lems. We will do this for general dimension d. However,
for d =2 we may use (5) to get an explicit expression for
P, (V) for the orthogonal ensemble, and a corresponding
expression for the unitary case, and we do this first.

For 2 random levels and unit mean spacing,

Pg(S)=e~5. (10)
Since S%2=¥V2+ D?, integrating (5) and (10) over D yields

PV(V;B=1)=$K0(|VI) : (11)

where K, is a modified Bessel function. For the unitary
ensemble, P, (V) is obtained after integration of (6) and
(10) over D and U.

The expressions Py (V) for both the d =2 orthogonal
and unitary ensembles given by Eq. (11) and integration
of (6) using (10), respectively, are plotted in Fig. 1(a).
From the dependence of Py (H;pB) on B for a fixed d, we
expect that at higher B, or lower temperatures, Py, (V)
will be more peaked near V=0, i.e., lie more around the
potential minimum, than at lower 5. We observe this to
be the case in Fig. 1(a), where P, (V) of the unitary en-

(b)

-2 -1 0 1 2 3

FIG. 1. (a) Py(V;B=1) (solid curve) and P,(V;=2)
(dashed curve) for d =2 ensemble, given by Eq. (11) and integra-
tion over (6) using (10), respectively; (b) Py(V;8=1) for ensem-
ble containing eigenvalues with Poisson statistics, in units of the
standard deviation. The full curves from top to bottom are the
distributions for matrix dimensions 2, 3, 4, 5, and 10, respective-
ly. The dashed curve is Gaussian.

semble is clearly more sharply peaked around ¥ =0 than
is the orthogonal expression (11), as expected from the
discussion above. In both cases, Pj(0) is singular. From
Eg. (11), one finds that the d =2 orthogonal ensemble ap-
proaches the singularity at V=0 logarithmically. The
same is true for the unitary ensemble, as one finds by in-
tegrating (6) and (10) at V'=0.

For d >2, we turn to the Metropolis Monte Carlo
method [12] referred to above. We seek the equilibrium
distribution of matrix elements of H that satisfies the
equilibrium distribution (7a) with potential W given by (9)
(or more generally any W), starting with some trial distri-
bution of H. So that the initial distribution converges to
equilibrium, the Metropolis method imposes the detailed
balance condition [12]

Peq(HU)T(HIJ—PH‘;)ZPeq(H,;)T(H,I]—PH,]) > (12)

where T (H;;— H;;) is the transition probability from H;;
to Hj;. Defining 8W=W(H;;)— W (H};), the transition
probability T is satisfied by [12]

exp(—B8W) if W >0

T(H,;—~H})= |, (13)

, otherwise .

Equation (13) means that a randomly selected value of
Hj; is always accepted if W <0. It is sometimes accept-
ed if W >0, and its probability of acceptance in this case
is given by Pr=exp(—pB8W). Selecting a random num-
ber r between 0 and 1, we accept Hj; if P2 r and do not
otherwise, in which case we keep the old value H;;. This
process is repeated over and over for each element of the
matrix, until convergence to equilibrium is established.
In practice, we have needed to select O ( 10®) random ele-
ments to obtain P (V) for the small-d ensembles.

In Fig. 1(b) we plot Py (V) obtained from the Metropo-
lis method for the orthogonal ensemble with Poisson level
statistics and d =2, 3, 4, 5, and 10, along with a Gaussian
function.

As mentioned above, the d =2 expression for Py(V)
has a logarithmic singularity at V=0, which we know
from the form of Eq. (11) near ¥=0. In Fig. 1(b), it ap-
pears that P,,(0) is nonsingular but also nonanalytic, and
we conjecture that P, (V) is nonanalytic at V=0 for gen-
eral d. Our ability to describe Py, (¥) in the neighborhood
of V=0 for general d is limited by the range of V over
which the Monte Carlo results are binned, or dV. [In
Fig. 1(b), d¥ is 0.1 in units of the standard deviation.]
Thus, the fact that P, (V) for d =10 appears everywhere
smooth can be attributed to numerical smoothing over
the interval dV.

In addition to the smooth appearance of the d =10
curve plotted in Fig. 1(b), it also looks very much like the
Gaussian superimposed in the figure. Even for a matrix
ensemble producing very different level statistics than
that of the Gaussian ensembles, i.e., random levels with
Poisson statistics, the matrix elements appear to arise
from a Gaussian distribution for even relatively small-
dimensional ensembles. This is deceptive, because dV is
too large to observe the precise form at V=0, as dis-
cussed above. On the other hand, it is important to real-
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ize, since if we try to observe any differences between ma-
trix element distributions of Hamiltonians whose eigen-
value statistics are Poisson and those of the Gaussian en-
sembles, we can only do this if the Hamiltonian is
transformed to small blocks. This we do in the following
section.

Before turning to the block diagonalization of a model
Hamiltonian, we mention that the above discussion and
examples of matrix ensembles whose eigenvalues are ran-
dom, can be carried over straightforwardly to any eigen-
value statistics. The probability density of the eigenval-
ues, and hence W, would be selected appropriately, and
the above methods are, of course, still valid. As the ei-
genvalue statistics approach those of the Gaussian en-
sembles, we expect P, (V) to look even more Gaussian for
even smaller d than those just shown for the random level
case. This may be illustrated by simply looking at d =2,
for which the most dramatic differences between general
invariant ensembles and the Gaussian ensembles can be
observed. Instead of choosing P¢(S)=e ~Sin Eq. (5), we
could, for example, choose Pg(S) to be the Brody distri-
bution [13]

Py(S;0)=(1+w)aS%xp(—aS' ™),
. (14)
2+tw

a:F = =
1+w

Equation (14) interpolates between level statistics that are
Poisson («0=0) and those of the d =2 Gaussian orthogo-
nal ensemble (w=1), the latter being the Wigner distribu-
tion. Combining Egs. (5) and (14), we find that P,(0) is
singular for o =0, finite but nonanalytic for 0 <w <1, and
analytic only in the GOE limit, o =1. For general w, one
finds P, (0)«I'(w/w-+1). Examples of intermediate level
statistics using the Brody distribution will be given in the
next section, together with results of the block-
diagonalized quartic oscillator Hamiltonian.

IV. BLOCK DIAGONALIZATION

To make contact with a Hamiltonian system, we con-
sider the relation of a model Hamiltonian to the ensemble
defined above. For many physical Hamiltonians and typ-
ical bases, the structure of a semiclassical Hamiltonian is
banded in the sense that elements generally become
smaller the further they are from the diagonal [14]. Such
representations are not typical members of the ensemble.
Therefore, to compare the elements of the model Hamil-
tonian with those of the ensemble, we must reduce the
effect of the particular representation as much as possi-
ble, as well as keep to small matrices, for which clear
differences in the matrix element distributions can be ob-
served for ensembles containing different energy-level
statistics, describing different degrees of ergodicity. We
accomplish both by transforming a large Hamiltonian in
a given basis to block-diagonal form, and comparing the
distribution of elements in the d-dimensional blocks,
where d is small, to those of the d-dimensional random
matrix ensemble plotted in Fig. 1(b).

The model Hamiltonian is the coupled quartic oscilla-
tor,

H=(p}+p;+x*+y*)/2—kx?y? . (15)

For k =0, the Hamiltonian is integrable, and the energy-
level statistics have been observed to be Poissonian. The
minimum value of k for which this Hamiltonian is
strongly chaotic has been determined numerically, and is
around 0.6 [15]. For 0 <k <0.6, the classical phase space
is described by chaotic regions separating regions of regu-
lar dynamics, and the energy-level statistics are inter-
mediate between Poisson and those of the GOE [15b].

We represent H in a basis of coupled harmonic oscilla-
tors and A; symmetry. In this basis, H given by (15) is
banded about the diagonal, and for no value of k does it
appear as a representative member of any of the matrix
ensembles discussed above.

The matrix O that transforms H to block-diagonal
form Hgp, is uniquely defined by the condition ||O—1|| =
minimum [16], which means that one block-diagonalizes
H in such a way that it remains as close as possible to its
original representation. If S is the matrix of eigenvectors
of H, and Sgp the matrix containing the block-diagonal
part of S, then

O =S84l (S& 8ar) "1/ (16)
A given block of Hygp, labeled by a will be determined by
Hgp=0%"E“0°

. an
0°=S8gn(SEpSEn) /%,
where E“ contains the d eigenvalues of block a. The
blocks of the transformed H are members of the ensemble
which we now study and compare with the ensemble dis-
cussed in the previous sections. In determining Py (V) of
the blocks, it is important to account for variation of the
level density. Thus, in the process of block diagonaliza-
tion, we ‘“‘unfold” the eigenvalues of H so that the mean
spacing is 1. The following results come from matrices of
dimension 2000, and energy levels between 200 and 800.
Figure 2 shows P, (V) for two values of k in Eq. (15),

0.8 0.4
(a) (b)
0.6 0.3

20.4 0.2 N
o

FIG. 2. Py(») for the d-dimensional blocks of the
transformed Hami'tonian (15); (a) k=0.6, d=3; (b) k=0.6,
d=10; (c) k=0.0,d=3; (d) k=0.0, d=10. The dashed curves
are Gaussians, theoretical forms for the data in (a) and (b). The
solid curves in (c) and (d) are predictions from the ensemble
containing random eigenvalues. The size of the matrix elements
is fixed by the local mean level spacing, here set to unity.
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k=0.0 and 0.6, representing the integrable and ergodic
limits, respectively. The level spacing distribution at
k=0.6 fits the Wigner distribution, and we thus expect
the matrix elements to be distributed as a Gaussian, at
least for small blocks. It is not obvious, however, that
this expectation should be fulfilled for large blocks, since
then the specific representation of H appears, which in
this case is very structured and nothing like the indepen-
dent matrix element assumption taken for the Gaussian
ensembles. We nevertheless observe in Fig. 2 that the
Hamiltonian (15) expressed in a basis of coupled harmon-
ic oscillators can be transformed to at least ten-
dimensional blocks and the distribution of the matrix ele-
ments is very close to Gaussian.

For k =0, the Hamiltonian (15) is integrable and the ei-
genvalue statistics are Poissonian. It is for this value of k%,
then, that we can compare P, (V) of the ensemble of
blocks with that generated in Sec. III for various d. We
do this in Figs. 2(c) and 2(d) for d =3 and 10, respective-
ly. From 2(c), we observe that the resemblance of the
empirical distribution to the theoretical distribution for
d =3 is unambiguous, and clearly different from the
Gaussian, which we obtained for k =0.6 [Fig. 2(a)]. This
result extends that found previously for d =2, for which
agreement between the empirical and theoretical distribu-
tions is also excellent [17]. For d >3, we have found
empirical Py (V) to also remain very close to the theoreti-
cal curves, with the only exception being that P,(0) is al-
ways larger than in theory, the discrepancy growing with
d. This trend is evident in Fig. 2(d), which shows d =10,
where the empirical result is indeed very close to what we
expect, even following the minor differences from the su-
perimposed Gaussian. The most apparent difference
from theory is the very large Py (0), which we would ex-
pect to be smoothed away over the bin size used in our
study. That we do observe some discrepancy would,
however, have to be expected, and reflects the particular
basis that we chose, which is particularly suitable for
describing the integrable Hamiltonian.

Finally, we consider cases between the universal re-
gimes, i.e., level-spacing statistics that are distributed be-
tween the limits of Poisson and Gaussian ensemble statis-
tics. As discussed at the end of Sec. III, we may define a
two-dimensional ensemble straightforwardly by using a
spacings distribution that interpolates between the Pois-
son and Wigner limits, and we have chosen the Brody
distribution, which, though ad hoc, fits the level-spacings
distribution of a variety of semiclassical spectra satisfac-
torily. Using Egs. (5) and (14), and integrating over D, we
have a form for Py, (V) which may be compared with that
of Hamiltonian (15) block diagonalized to an ensemble of
two-dimensional blocks. We have done this for k=0.2
and 0.3, and the empirical Py, (V) is plotted in Fig. 3.
From the level-spacings distribution of the eigenvalues of
H at these two values of k, we find w in (14) to be 0.42
and 0.57 for k=0.2 and 0.3, respectively. Using these
values of w, we superimpose theoretical P, (V) in Fig. 3.
The trend in P, (0;w) with increasing o, predicted at the
end of Sec. II, is clearly seen here, namely the approach
from a singularity at ®=0 to always smaller values as

0.6

P (V)

(b)

-2 -1 0 1 2 3
v

FIG. 3. Same as Fig. 2, but with (a) k=0.2, d =2; (b) k=0.3,
d=2. The superimposed theoretical curves are from Eqgs. (5)
and (14) with (a) ®=0.42 and (b) @=0.57, obtained by fitting
Eq. (14) to the empirical level-spacings distribution of cases (a)
and (b).

o— 1. Agreement between the theoretical curves and the
data is seen to be very good in both cases.

V. CONCLUSIONS

We have constructed random matrix ensembles that
are independent of any representation, and contain eigen-
value statistics of nonergodic Hamiltonian systems.
Among our aims has been to study the distribution of
matrix elements of members H of the ensemble, and we
found we could do this by defining a single distribution
Py(V), where V=2H,; for orthogonal ensembles, and
may easily be generalized to unitary as discussed above.
The relation to the diagonal matrix elements comes from
defining D=H;—H;, and the observation that
Py(V)=Pp(D) for V=D, shown in the Appendix.

The numerical method we use to construct H and ob-
serve Py(V) is the Metropolis Monte Carlo procedure
that is standardly used in many-body statistical mechan-
ics. We may adopt this due to the appearance of Py (H)
as a Boltzmann equation with potential W that deter-
mines the eigenvalue statistics of the ensemble. The
‘“temperatures” are inversely related to the canonical
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transformation group of the ensemble B. In selecting W
such that the eigenvalues of the ensemble are random, it
contains the Poisson level statistics of semiclassical, inte-
grable Hamiltonians.

As is now well established, a sufficient criterion for ob-
taining eigenvalue statistics of the Gaussian ensembles
from an invariant ensemble is that Py (H) and the eigen-
value density be smooth. We therefore expect that an in-
variant ensemble containing completely random eigenval-
ues must be defined with a P;(H) that is somewhere non-
analytic, and this is clear from the definition of Egs. (7)
and (9). What is surprising to us is that the singular func-
tion Py(H) yields Py (V) that converges rapidly to a
Gaussian with matrix dimension, where the essential
difference from a Gaussian can be seen only very close to
V' =0. Figure 1 illustrates how rapid the convergence is,
where we see the close resemblance to a Gaussian already
at d =10. Differences would be found near ¥ =0, where
cusps observed at smaller d are numerically smoothed
away at d =10.

We also explored the relation between a “‘typical”
Hamiltonian system and the ensemble by representing a
model Hamiltonian in block-diagonal form, and compar-

ing the distributions of the matrix elements in the blocks
with those expected from the ensemble. The distribu-
tions in the blocks compare well with those of the matrix
ensemble, though departing somewhat and not unexpect-
edly as the block dimension increases, due to the
influence of the particular representation of the Hamil-
tonian.

An open problem arising from this study is to describe
P,(V) [Pp(D)] in the neighborhood of V=0 (D =0).
We have done this above for d =2, where we found in
general a nonanalytic point at ¥ =0, except for the
Gaussian ensembles. For d =2 invariant ensembles con-
taining Poisson level statistics, this nonanalytic point is a
logarithmic singularity. The numerical studies presented
herein strongly suggest that P,(0) is nonanalytic for gen-
eral d, and an analytical investigation would be desirable.
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APPENDIX

We show here that P, (V)=Pp(V), where V and D are defined by Eq. (1). In terms of eigenvalues E ,, and eigenvec-

tors a and b, we may write ¥ and D as

V=23 E.ab,, (A1)
D=3E,(a2—-b2). (A2)
a
Then their respective probability densities Py, and P, are
Py( V)=f I1da,db,dE P(...,E,,...)8 |V—23 E,a,b, |8(a-b)8(1—a-a)8(1—b-b), (A3)
a a
Pp(D)= f Il da,db,dE Pg(... ,E_,...)d [D —E,(a2—b?) ]8(a-b)8(1-—a-a)8(l—b-b) , (A4)

where the last three 8 functions in (A3) and (A4) impose orthogonality of a and b, normalization of a, and normaliza-

tion of b, respectively. We define vectors a’ and b’ as
, 1

=—(a+ (AS)
a Ve (a+b),
1
= (a— (A6)
b Ve (a—b),
Then
Il da.db,—]] da db, , (A7)
6(a-b)6(1—a-a)d(1—b-b)—>5(a’-b’')8(1—a’-a’)d(1—b’-b’) , (A8)

since a and b have been simply rotated in the ab plane by 7 /4. Substituting 2a b/, for (a2 —b?) in (A4), and using (A7)
and (A8), the integral on the right-hand side becomes identical to the integral on the right-hand side of (A3), so that
Py (V)=Pp(V).
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